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BENDING OF A BUILT-UP SANDWICH BEAM
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Abstract—A built-up sandwich beam is modeled by two thin elastica of fucing matenal affixed to
a series of equally spaced rigid separation blocks. The large-deformation equations under pure
bending are formulated and solved by perturbations and numerical integrations. The results show
the non-linear phenomena of critical load. snap buckling. and hysteresis. A global critical moment
is defined.

INTRODUCTION

Due to their light weight and relative strength, composite beams have become extremely
important elements in modern structures and machines. One type of widely used composite
is the sandwich plate which is composed of two strong, thin elements of facing material
attached to a low density core or separated by spacers. Although the sandwich construction
has been in use for some time (Marshall, 1982) no previous theorctical work can be found
on its behavior, in particular at large deformations.

This paper considers an ideal built-up beam shown in Fig. 1(a). Two thin, strong
clastic sheets are glued to evenly spaced rigid blocks. The sheets are thin enough such that
they can be considered inextensible elastica (Love, 1944). The behavior of the system under
pure bending moments is to be studied.

FORMULATION

Since the built-up beam is under pure bending, the deformation can be described by
one representative bent segment shown in Fig. 1(b). Let 2L be the lengths of the free elastica
clements and AL be the separation distance of the undeformed elastica. By symmetry only
the right half needs to be studied.

Due to the pure applied moment, M’, the forces on the elastica elements at the
midpoints and thus along each element, must be horizontal, equal and opposite. The bottom
element shown is under tensile horizontal force £ and the top clement is under compression.
Let 5" be the arc length from the midpoint of the lower element and 8 be the local angle of
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Fig. 1. (a) The vertical cross-section of a built-up beam. The rigid blocks are shaded. (b) The
coordinate system on onc segment.
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inclination. Considering a local moment balance on a small segment ds’. the elastica
equation (Frisch-Fay, 1962) 1s
do .
El — = F’ sin 0. (1
ds’-

Here E7 is the flexural rigidity of the elastic sheet. The lengths are normalized by L. the
forces by EI'L* and the primes are dropped. Equation (1) then becomes

d:o—F‘ 0 (2)
T = Fsind. 2

The Cartesian coordinates (x. v) for the lower sheet can be obtained from

%3 = cos 0, j—i = sin §. (3)

The boundary conditions are
X(0) =y(0)=0. 6(0)=0 (4)
0(l) = . (5)

Here a is the half angle of one periodic segment bent by the moment M. Let an overbar
denote the upper clastica element. The governing cquations are similar

7
j‘{ = - [sinf (6)
ds di
4 = cos a, 4, = sin a (7N
£0) = §(0) =0, J©0)=0 (8)
a(1) = a. )]

The unknown force Fis obtained by the constraint on the lateral displacement due to the
rigid block

()44 sin a = x(1). (10)

The moment, normalized by Ef/L? is then
do dd do dd
M=Ficosa+ . (ND+ - ()=CF+  -(0)+ , (0). an
ds ds ds ds

Here CL s the gap width at the symmetry line. Equations (2)-(11) arc to be solved for a
given geometry and a given x or M. Due to the high degree of nonlincarity, the analytical
solution in closed form is not possible.

PERTURBATION SOLUTION FOR SMALL «

Let x = &* « |. An order-of-magnitude analysis suggests the following expansions for
both lower and upper elastica elements :
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0 = 59[ +8:02+8303 -+

F=F0+€F|+E:F:+"‘
X =S+ X+ X+

V=Ev FEya 4
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(12)

(13)
(14

(15)

Note the absence of the O(g) term in the expansion of x. Such a term can be shown to be

zero if included. Equations (2)-(10) give the leading orders

d9, d*d,
- = F0,. P

ds —F0,

01(0) = 01“) = gl(o) = g:“) =0

dv,  0f di; ; 0) = £.(0) = 0
ds 2" ds 2 ¥:(0) = %.(0) =
() +4i=x:(1)

dy, dr, .
=1, ""=ﬁ|- w(0) =7, (0)=0.
dy ds

Equations (16) and (17) yield
0, =0.
But for a non-trivial solution as required by equation (19), {7, is not zero
J,=C,sinns, F,=n’

where the constant € is determined from solving egns (18) and (19)

__CI .t Iy

2n
C| = iz\//
Equation (20) gives
C
v, =0, 5= ———'—(I—cos ns).
n
The next order equations are
d*0, d*d,
E;S'=F002+F|0|. ‘a;‘;: —Fogz—p|0|

0.(0) =0,(0) =0. 0,(1)=0.(1) =1

dx ds _
E?‘ = —0,0,, -d;r‘- = 0,0, x,(0) = %(0) =0

(16)

(17

(18)

(19)

(20)

2n

(23)

(24)

(25)

(26)

(27

(28)
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.f;(l) =x_1(l)
d_lr': d.fl - , -0 =
.a;_():, E-—gj. }1(0) "‘)2(0)—0'

The solutions to eqns (26) and (27) are

sinh ns .
0, = — . #,=C, sin ns—s cos ns
sinh «
—2n
Fi=—.
C,

Using eqns (28)-(30) it can be found that

C
x:=0, %, = =L s(t—cos 2ns). Ci= ——

4rn 2n

(cosh ny— 1) _ l s sin ns

y, = e, Py = 5—,(! —COS$ 1§) — ———r,
- 7 sinh n 2r- n

For F- a solution for &, is needed from

20

3 : - C .
+ni, = 7; 0 -0, -F.0, = :4 L sin 3ns+ Fus cos ns

&0,
ds?

ZC')
+(E—8""' "‘FICZ"FJ,CI) sin s,

The solution is

cl Fi . | (niC) |
03=m31n 31:.\'-&-;‘-7;.? sin s — 5 T_F‘C’_FIC“}_; § COS 1S

+C, cos ns+ C, sin ms.

The boundary conditions ,(0) = (1) = 0 dictate

poomCG L
8 2nC, Cj
The normalized maximum local moment expericnced is

dd \
-&;(0) = nCt— 3 +0(%).

The horizontal force is

, 2nm nCi 1 Py, \
F=nrn —6;lr.+( 8 57C, Clz>5 +0(e").

Equation (11) gives the moment

(29)

(30)

31)

(32)

(33)

(34)

35

(36)

(37

(38)

(39
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. dé ,d8,
M = (Fy+¢F,+€*F;)4 cos 1+e—d—s—l-(l)+s' Al

g, .df, ,
+8E(l)+5 5(1)4‘0(6 )

2

_nCi 3 riCt  C, 5) . ,
=3 _?C‘8+(~32__8_n+n coth n+z e~ +0(). (40)

-

The constant C, is nonuniquely related to 4 by eqn (24). The work done is

N nC; n:Cl  C, 5\«° 52
4] _J; Mdx = 3 1—nC,a\/a+( N —'8n+ncolh n+Z ?+O(a ). (41)

Note the work done for the same deflection « is larger for negative C, when the elastic
sheets bulge out from both sides than that for positive C,, when they bend towards the
same side. Therefore, the positive sign should be taken in eqn (24) since it leads to an
equilibrium with lower strain energy. and thus is more likely to happen.

The minimum gap width is then

! do df

NUMERICAL INTEGRATION

¢
LAV 43
s \/F X \/F (43)
The governing equations become
do . d¢

g7 = sin 0, 3, = cos 0 (44)

d’6 . d&
g7 = i d, 3. = cos 0 45)
0(0) = £(0) = 0(0) = £(0) = 0. (46)

For given d0/dr(0) and a guessed dd/dr(0) eqns (44)-(46) are integrated by the Runge-
Kutta-Fehlberg algorithm until 0 = 0, say at r = r*. At this point the value of

Er)-&r*)  x—F

i* =
r* sin (0(r*)) sina

n

4"

is noted. The initial guess d/dr(0) is adjusted such that A* is equal to the prescribed 4.
Then

F= () (48)
do Lo d0  d0
3; @ =7 0. F=(0) =r*=(0) (49)

SAS 25/4-G
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Fig. 2. The normalized moment M vs turning angle x for vartous 4. Dashed lines are from eyn (40).

df l
, (50)

hd ll'
M= i(r*)? cos O+t M+ (%)
dr dr™ 7

The deformed shape can be determined by using egns (48) and (49) and integrating egns
(2)~(4) and (6)-(9) for the coordinates (v, v).

DISCUSSION OF RESULTS

Figure 2 shows the important relation between the applied moment Af and the turning
angle x for various constant geometric ratios A. The perturbation solution agrees well with
exact numerical results for small a. As expected the moment is higher for higher 4 (more
closely spaced supports). It can be noted however, unlike the pure bending of a single elastic
beam, there exists a critical moment below which there is no deformation. This critical
moment, from eqn (40), is n°A. Furthermore, it is noted that the moment-angle curves at
low « have negative slope. This means as soon as the system buckles, it is unstable if a
moment is prescribed.

Take for example the case when A = 2. (The length of the free elastic segment cqual to
the separation by the rigid supports.) When moment M is increased from zero at State @,
deformation does not begin until the critical moment (2r°) is reached at State @. Then the
system suddenly collapses to State @ at the same M. If the moment is further increased
the system stiffens and the system deforms gradually to State ®. The unloading path is
different. As the moment decreascs the deformation follows States (® and @) until State
@®. The system snaps to the undeformed configuration at State ® with a further decreasc
in M. Figure 3 shows the configurations of the various states which correspond to those
shown in Fig. 2. This snapping hysteresis phenomenon is most prominent at low 4. In fact
for 1 = | the system offers no resistance at all after buckling. Structurally. high 4 geometries
(closcly spaced supports) offer much better resistance and postbuckling stability.



Bending of a built-up sundwich beam 437

P -y,

P

Fig. 3. Deformed conligurationsfori =2 QM =0 QM =19.74. @ M = {9.74.® M = 2221
QO M=1782;@ M=1782.

The cusps at the critical moments (e.g. at State @) indicate the system is imperfection
sensitive there. Geometric or matertal imperfection would easily round the cusp and lower
the effective critical moment, A more appropriate index for buckling is perhaps the minimum
moment (c.g. at State @) which is called the global critical moment. Below this global
critical moment M, the only cquilibrium state is the undeformed state. it is also relatively
insensitive to imperfections. Figure 4 shows Al increases almost lincarly with 4. Below
A= 1.2, M, is undcfined since the system collapses completely and the two clastic sheets
touch at ¥ = 0 before reaching a minimum.

Figure § shows the normalized lateral foree F experienced by the clastic sheets. Similar
to the applicd moment, the foree first decreases then increases with a. The foree and applied
moment are related by eqn (11), in which the gap with C is decreasing and local moment

aof
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Fig. 4. Global critical moment M, as a function of 4: —. —. — .M =nr'h; ———, from eqn
(40) ; ., numerical.
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Fig. 5. Horizontal force F and maximum focal moment F(0) as @ function of 2 for various . Dashed
lines are froneyn (38) or cyn (39},
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Fig. 5. Momentcurvature relation. Dashed lines are from cqns (40) and (52},
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increasing with 2. Also shown in Fig. 5 is the maximum normalized local moment §°(0)
which increases with x. Both £ and §°(0) are useful in the design of the sandwich system.
The axial length of the rigid block 7L enters through the normalized curvature

. ¥ DoAY A
h—<2tan1+sinz+2) ’ Gh

For small x or small &

1=6:=<|+§>K<l—::l\'+}{ri\/(l+;’;)h‘}:+"'). (32

Let x, indicate the curvature for y = 0. The moment—curvature relation. important in non-
linear beam theory. is shown in Fig. 6. The character of the curves is similar to that of
the moment-end angle relation, showing critical moment and instability. An empirical
approximation for higher 4 values for the M —x, curve would be a vertical straight line
from zero to a value less than M. then another straight line of positive slope. As a system,
this behavior is similar to that of a rigid-plastic beam with strain hardening. When 7 is not

zero, the abscissa is given by
. | !
i
K= . 53)
(2 tan o x.,) (

The interesting behavior of a built-up sandwich beam under pure bending has now
been predicted theoretically. [t is hoped that this paper will lead to other rescarch, especially
well-designed experiments to supplement the important theory of sandwich construction.
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