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Abstrac:t-A built-up sandwich beam is modeled by two thin elastica of facing material affixed to
a series of equally spaced rigid separation blocks. The large-deformation equations under pure
bending are formulated and solved by perturbations and numerical integrations. The results show
the non-linear phenomena of critical load. snap buckling. and hysteresis. A global critical moment
is defined.

INTRODUCTION

Due to their light weight and relative strength. composite beams have become extremely
important elements in modern structures and machines. One type of widely used composite
is the sandwich plate which is composed of two strong. thin elements of facing material
'lttached to a low density core or separated by spacers. Although the sandwich construction
has been in lise for some time (Marshall. 1982) no previous theoretical work can be found
on its behavior. in particular at large deformations.

This paper considers an ideal built-up beam shown in rig. I(a). Two thin. strong
clastic sheets arc glued to evenly spaced rigid blocks. The sheets arc thin enough such that
they can be considered inextensible c1astica (Love. 1944). The behavior of the system under
pure bending moments is to be studied.

FORMULATION

Since the built-up beam is under pure bending, the deformation can be described by
one representative bent segment shown in Fig. I(b). Let 2L be the lengths of the free elastica
elements and ),L be the separation distance of the undeformed elastica. By symmetry only
the right half needs to be studied.

Due to the pure applied moment, M', the forces on the elastica elements at the
midpoints and thus along each element, must be horizontal. equal and opposite. The bottom
element shown is under tensile horizontal force F' and the top clement is under compression.
Let s' be the arc length from the midpoint of the lower element and 0 be the local angle of

Fig. I. (a) The vertical cross-section of a built·up beam. The rigid blocks are shaded. (b) The
coordinate system on one segment.
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inclination. Considering a local moment balance on a small segment ds'. the elastica
equation (Frisch-Fay. 1962) is

d~O

EId~ = r sin 0.s -
( I )

Here £1 is the flexural rigidity of the elastic sheet. The lengths are normalized by L. the
forces by £1/ L ~ and the primes are dropped. Equation (I) then becomes

The Cartesian coordinates (x. y) for the lower sheet can be obtained from

dx dl'
~- = cos O. .-=- = sin O.
ds ds

The boundary conditions are

x(O) = yeO) = o. 0(0) = 0

O( I) ==t.

(2)

(3)

(4)

(5)

Hcrc =t is thc half angle of onc pcriodic scgmcnt bcnt by thc momcnt M'. Lel an ovcrbar
dcnotc thc uppcr c1astica c1cmcn!. Thc govcrning cquations arc similar

(6)

d.\'
- = cos IiUs .

dV .-". = SIO (J
Us

.\'(0) = ,v(O) = o. tJ(O) = 0

(J( I) :::: =to

(X)

(9)

Thc unknown forcc F is obtained by the constraint on the lateral displacement due to the
rigid block

.\'( I) +;. sin IX = x( I).

The moment, normalized by £1/L J is then

uO dtJ dO dO
M = n cos=t + (I) + . (I) = CF+ (0) + d." (0).Us ds ds,

(10)

(II )

Here CL is the gap width at the symmetry line. Equations (2)-( II) are to be solved for a
given geometry .1Ild a given =t or M. Due to the high degree of nonlinearity, the analytical
solution in closed form is not possible.

PERTURnATION SOLUTION FOR SMALL :r

Let IX == £~ « I. An order-of-magnitude analysis suggests the following expansions for
both lower and upper elastica clements:
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, J
X = s+e-x:+e x,+'"
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(12)

( 13)

( 14)

(15)

Note the absence of the O(r.) term in the expansion of x. Such a term can be shown to be
zero if included. Equations (2)-( 10) give the leading orders

(16)

( 17)

dr
• I = 0

1ds .

d.\', fT;
-d" = -~. x:(O) = .\':(0) = 0

.\ - ( 18)

( 19)

(20)

Equations (16) and (17) yield

But for a non-trivial solution as required by equation (llJ). tTl is not zero

when: the constant C I is determined from solving eqns (18) and (llJ)

Equation (20) gives

(21 )

(22)

(23)

(24)

The next order equations are

YI = O.
C1

~I = -(I-cos 1ts).
• 1t

(25)

(26)

(27)

(28)
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dYe 0 d.v: _ ,T
- (l .r.,(O) = .v,.(O) = O.~ - :. ds - e'

(29)

(30)

The solutions to eqns (26) and (27) are

O. = sinh 7ts.. if: = C 2 sin 7tS-S cos 7tS
- sinh 7t

Using eqns (28)-(30) it can be found that

(31)

(32)

_ C
1

X, = O. x, = 47t .1'( I-cos 27ts).
I

C, =--- ')_7t
(33)

(cosh 7tS - I)
v., =---.-~'---- .
• - 7t slOh 7t

For F2 a solution for /T, is needed from

_ I s sin 7tS
y: = ;...-dl-cos 7ts)- ---.

.!7t - 7t
(34)

d 2/J, , 7t 2
\. • -7t 2C:- , +7t-tJ1 = tJl -[·I/T. - f ,(JI = 24 sin 37t.\' + F,s cos 7t.I·ds' . 6 ..

The solution is

(J C~. FI ' . I (7t2C~ I )) = -9') SIO 37ts+ ~--S" SIO 7tS- -2 -8- - FIC: - F2C\ -., S cos 7tSI _ 47t 7t _7t

+C) cos 7t.l'+C4 sin 7t.\'. (36)

The boundary conditions (JJ(O) = (JJ( I) = 0 dictate

The normalized maximum local moment experienced is

The horizontal force is

, 27t (7t 2Cr I I ) , ,F= 7t-----£.+ -- - -- - --, £.-+0(£.·).
C, 8 27tC, Cj

Equation (II) gives the moment

(37)

(38)

(39)
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,. dOl ,dO,
M = (Fo+ eF I +e-F~»). cos :x+ed;(I)+e- ds- (I)

dt1 dt1,
+e ds

l
(I)+e~ ds- (I)+O(e J

)

The constant C\ is nonuniquely related to A. by eqn (24). The work done is

4JS

(40)

Note the work done for the same deflection :x is larger for negative C I when the elastic
sheets bulge out from both sides than that for positive C I , when they bend towards the
same side. Therefore. the positive sign should be taken in eqn (24) since it leads to an
equilibrium with lower strain energy, and thus is more likely to happen.

The minimum gap width is then

I [ dO dfT ]c = ~ M - -- (0) - -- (0) .
f ds ds

(42)

NUMERICAL INTEGRATION

For !X not small eqns (2) -(10) need to he integrated numerically. The process can be
simplified as follows. Let

r ~

s = JF' x = JF'

The governing equations become

(43)

d~
- = cos 0
dr

(44)

d2ti . d~-, = - Sin tit - = cos 0
dr dr

0(0) = ~(O) = ti(O) = ~(O) = O.

(45)

(46)

For given dO/dr(O) and a guessed dti/dr(O) eqns (44)-(46) are integrated by the Runge
Kutta-Fehlberg algorithm until 0 = tit say at r = r·. At this point the value of

(47)

is noted. The initial guess dO'/dr(O) is adjusted such that )'. is equal to the prescribed i..
Then

SAS 25/4-C

dO dO dO' dO'
ds (0) = r· dr (0), ds (0) = r· dr (0)

(48)

(49)
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(50)

The llcformco sh<lpe c<ln be determined by using eqns (4S) <1110 (49) ano integrating egns
(2)-(4) and (6)-(9) for the coordinates (x.}').

DISCUSSION OF RESULTS

Figure 2 shows the import<lnt rel'llion between the applied moment AI <Ind the turning
angle ~ for various constant geometric mlios ;.. The ~rturbation solution agrees well with
exact numerical results for small ct. As expected the moment is higher for higher;' (more
closely spaced supports). It can be noted however. unlike the pure bending ofa single clastic
be.lm. there exists a critical moment below which there is no deformation. This critical
moment. from eqn (40), is It:;.. Furthermore. it is noted that the moment-angle curves at
low ~ have negative slope. This means as soon as the system buckles. it is unstable if a
moment is prescribed.

Take for example the c'lse when ;. = 2. (The length of the free clastic segment equal to
the separation by the rigid supports.) Whcn moment .'>1 is increased from zero at State CD.
deformation docs not begin until the critical moment (21t~) is reached at State Q). Then the
system suddenly collapses to State @ at the same ,'-I. If the moment is further increased
the system stiffens and the system deforms gradually to State (D. The unloading path is
different. As the moment decreases the deformation follows St<lles @ and @ until State
0). The system snaps to the undeformed configuration at State @ with a further decrease
in M. Figure 3 shows the configurations of the various states which corrcspond to those
shown in Fig. 2. This snapping hysteresis phenomenon is most prominent at low;" In fact
for A. = I the system offers no resistance at all after buckling. Structurally. high ;. geometries
(closely spaced supports) offer much bctter resistance and postbuckling stability.
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Fig. 3. Deformed conligurations fl'r A = :!: CD M = 0; C) M = 19.74; 0 M = 19.74; ~ M = :!:!.21 ;
Q) M = 17.S:!; ® M = (7.S:!.
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The cusps at the critical moments (e.g. at State a» indicate the system is imperfection
sensitive there. Geometric or material imperfection would easily round the cusp and lower
the effective critical moment. A more appropriate index for buckling is perhaps the minimum
moment (e.g. at State CD) which is called the global critical moment. Below this global
critical moment M~<. the only equilibrium st;lte is the undeformed state. it is also relatively
insensitive to imperfections. Figure 4 shows M~< increases allllost linearly with A.. Below
;. = 1.2. M a< is undefined since the system collapses completely ;lIld the two clastic sheets
touch ;It .\' = () before reaching a minimulll.

Figure 5 shows the normalized lateral force F experienced by the elastic sheets. Similar
to the applied moment. the force tirst decre;lses then increases with (x. The force and applied
moment arc related by eqn (II). in which the gap with C is decreasing and local moment
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Fig. 4. Global critical moment Moe as a function of A: -'-'-. M = It:;.; ---. from eqn
(40) : --, numerical.
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Fig. 5. JloriZ(llltal fon:l: F an,lmaximum local mumcnt iT'(O) as a functiVlI of:r fur various A. DlIshcd
lill<.'S arc fmm e'lll (31'1) ur Ct!" (39).
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Fig. 6. Moment~urvature relation. Dashed lines are from eqns (40) and (52).
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increasing with :x. Also shown in Fig. 5 is the maximum normalized local moment fi'(O)
which increases with :x. Both F and fi'(O) are useful in the design of the sandwich system.

The axial length of the rigid block iL enters through the normalized curvature

For small :x or small/\:

(
i' .i( 1) ;.)- I

/\:= ---+--+-
:2 tan:x sin:x :2

(51 )

(52)

Let /\:" indicate the curvature for j' = O. The moment-eurvature relation. important in non
linear beam theory. is shown in Fig. 6. The character of the curves is simil'lr to that of
the moment-end angle relation. showing critical moment and instability. An empirical
approximation for higher ;. values for the M -1\" curve would be a vertical straight line
from zero to a value less than M~<. then another straight line of positive slope. As a system.
this behavior is similar to that of a rigid-plastic beam with strain hardening. When j' is not
zero. the abscissa is given by

( .. I) I'" = I +_
:2 tan:x 1\"

(53)

The interesting behavior of a built-up sandwich beam under pure bending has now
been predicted theoretic.l!ly. It is hoped tlwtthis paper will lead to other research. especially
well-designed experiments to supplement the import'lI1t theory of sandwich construction.
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